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Abstract

Depth-of-field imaging is what draws many people to ac-
quiring expensive cameras in order to create a professional
image emphasizing a subject. This usually requires a cam-
era body and a lens in order to properly produce results
with blurred backgrounds in relation to the subject. We aim
to recreate these images through software which would al-
low more people with lower quality cameras to simulate a
more expensive camera. By using stereo images, we create
a disparity map that is later used to create a depth map.
We then identify the subject through image segmentation in
order to understand what part of the image to keep in fo-
cus. After obtaining the necessary information, we blur the
non-subject area of the image in accordance to the depth
map we produced. Lastly, we stitch the blurred background
with the subject in focus to create a synthetic depth-of-field
image with the use of stereo images.

1. Introduction

Recently, many efforts in improving cell phone cameras
have been made to allow the casual photographer to create
professional-looking photos on their mobile devices. One
thing that the hardware on cell phones lack is the ability
to change the aperture on the phone camera. Aperture on
the lens is used by photographers with professional cameras
to change the depth-of-field of the camera, which affects
which items in teh image will be in focus and which will be
blurred. This technique can be used to emphasize a subject
in the photo by putting them in focus while the background
is blurred. We decided to create a synthetic depth-of-field
image processing pipeline using a pair of stereo images that
can be taken from a phone camera without a change in aper-
ture.

First, we mapped the disparity between the two stereo
images and smoothed it out to create the disparity map that
is then converted into a depth map for the image. We used
image segmentation techniques to determine the subject of

the image, and then used the depth map and the subjects
to determine the depth-of-field of the camera we are trying
to mimic, which is given by the minimum and maximum
depths of the subject areas. The depth map is also used to
blur the background with different kernel sizes based on the
depth of the pixel within the image. Altogether, this gives us
a nice effect that would be similar to that of a professional
camera with a lens.

1.1. Existing Research

We considered multiple research papers as a basis for
our project. Many of the recent papers took a look at cre-
ating synthetic depth-of-field with a single image[2][3][4],
which we used as inspiration for the background blurring
and stitching the image together. These papers use addi-
tional hardware and complex machine learning models that
we do not currently have access to, so we decided to move
forward with Stereo Images instead of a single image to cre-
ate the depth-of-field aspect for our project. For image seg-
mentation, we considered an open source machine learn-
ing model implemented with Keras and TensorFlow called
Mask R-CNN[1]. Using the stereo images and inspiration
from the papers and tools mentioned, we were able to yield
a result that mimics a professional camera.

1.2. Existing Solutions

The existing solution we improve upon in our project is
the naive approach of simply extracting the subject in the
photo and blurring the remaining image. This approach can
be seen in popular video conference software like Zoom
and Microsoft Teams, as well as in the open source Ten-
sorflowJS model called BodyPix in their function called
drawBokehEffect. The approach still requires proper
image segmentation, but this method of background blur-
ring creates a very artificial-looking image. This is espe-
cially apparent around the feet of a human subject, for ex-
ample. This naive approach of blurring everything but the
subject would end up blurring the floor around their feet,
which should not be blurred when using a real camera be-
cause it would be within the depth of field.
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2. Datasets
There are many Stereo Image datasets that are available,

but for our project we used the Middlebury Stereo dataset
that can be obtained from their website. With the Middle-
bury dataset we were able to choose from a variety of their
datasets that match our needs and give us the disparity maps
that are the ground truth, so we used this as a reference to
see that our results when creating the depth map were ac-
curate. The datasets also contain calibration information
including the baseline and camera information to translate
the disparity maps into depth maps. Using all the data that
is provided we recreated the results and compared them
against the ground truth. We compared results in increments
in order to ensure that our process is working properly and
adequately for the next steps.

3. Proposed Solution
We discuss our proposed solution in order to accomplish

the task of creating a Synthetic Depth-of-Field Image using
Stereo Images.

3.1. Depth Map

We began by creating a depth map using the stereo im-
ages that we obtained from the Middlebury Dataset. This
depth map would later be used in other sections of our pro-
posed solution to help construct our final image.

3.1.1 Disparity Map

The depth map construction required some work as we are
not given this information by default from the images them-
selves. We first created a disparity map of the two stereo
images using OpenCV’s library of functions. We initialized
a stereo semi-global block matcher and adjusted the param-
eters to yield the best results. We then created a matcher
for the right image that we call upon using the matcher we
just created before. This left us with 2 matchers that are
then used to create two disparity maps. Lastly, in order to
regularize the results that we have just obtained, we used
a Weighted Least Squares filter to output one regularized
disparity map. This gave us a disparity map without empty
spaces and areas that are not recognizable, as we have reg-
ularized everything to form a smooth disparity map.

3.1.2 Disparity Map to Depth Map

We then proceeded to use the disparity map to produce a
depth map. In order to conduct this step, we relied on the
equation:

Z =
f ·B
d

(1)

The Z in the equation is the depth in millimeters that
we are trying to find. The f stands for the focal length of

the lens that is taking the picture. The B is the horizontal
distance between the two cameras in millimeters. The f and
B are all provided in the callibration data in the Middlebury
dataset. Lastly, the d stands for the disparity pixel value
that is taken from the disparity map that we created. Using
all of these elements, we are then able to produce a depth
map that accurately represents the 3D depth within an image
using two stereo images.

3.2. Image Segmentation

In this step we will created a mask for the subject and
background so we can leave the subject of the image in fo-
cus and only blur the background.

3.2.1 Detecting the Subject

The first step in determining a foreground for the image is
figuring out what items will be the subject of the photo-
graph. Using an open source Tensorflow implementation
of a regional convolutional neural network called Mask R-
CNN, we detected objects within the image and created
masks for them. The model was pretrained on the MS
COCO dataset in the open source implementation, so we
were able to load the pretrained model weights directly from
the project and use it.

In our project, we assumed the objects that the photog-
rapher will want to be in focus will be around the center of
the image, so we created a rectangle around the center that
takes up 20% of the image area to determine which items
will be in focus. Going through each mask we retrieved
from the Mask R-CNN, we check if the mask overlaps with
any part of the rectangle, and if it does, we add that to the
subject objects that will be in focus in the image.

3.2.2 Determining the Depth-of-Field

Once we obtained the masks of the objects that will be in
focus, we then referred to the depth map to see what the
minimum and maximum depths of those masked items are.
Since we wanted the full object to be in focus, the range
of depths of the object will specify the depth of field of the
camera we want to mimic.

With this depth-of-field, we could now go through the
masks of objects we found earlier and determine if any other
objects that were not in the center of the image would be in
focus in our final image. The way we determined this is
we found the minimum and maximum depth in the depth
map in the region covered by each mask, and if this range
of depths is within the depth of field, we added the object
to a list of in-focus objects for the image. The remaining
objects are left out of the mask of in-focus objects as they
should be out of focus like the rest of the background.
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3.2.3 Using the GrabCut Algorithm

Now that we have some masks that covered the areas of the
image that are in the subject, we created one final mask that
stores the information of all of these objects. For each of
the objects that should be in focus (that we found in the pre-
vious steps of image segmentation), we set the final mask
value to 1 where the mask of the object is, which signals
that these pixels are definitely part of the foreground. The
remaining pixel locations are set to 2, indicating that we
are unsure if this is part of the foreground or background.
We then pass this mask into the GrabCut algorithm im-
plemented by OpenCV to get a mask that separates those
foreground objects, which are our subject objects, from the
background.

3.3. Gaussian Blurring the Background

Now that we have the segmented mask of the subject
and the depth map for the image, we can now move onto
the blurring of the background.

3.3.1 Scale Space

In order to produce a more natural-looking blurring affect,
we looked into creating scale space images by blurring the
image with different kernel sizes given the depth of the pix-
els within the image. We applied a Gaussian blur to blur the
images with different kernel sizes depending on the depth
that the image represents and stored these different versions
of the original images to be used in the next step of the pro-
cess.

3.3.2 Depth-based Blurred Image

Now that we obtained scale space images that have been
blurred, we then go through each pixel in the original im-
age and look at the depth value to then obtain the correct
scaled image from the set of images we had produced in the
previous step. By going through the entire image one pixel
at a time, we will be assigning each pixel to it’s respective
blurred pixel value according to the depth value from the
depth map. This will then produce an image that is blurred
based off of the depth of the items in the image.

3.4. Creating the Final Result

We know where the subject is and what we want to keep
in focus in the original image from the Image segmentation
mask we created earlier. To maintain this, we cut out the
focused subject from the original image such that we can
combine this with the depth-based blurred image we created
in the previous step in order to complete our final product.

Once we had our depth-based blurred image and our in-
focus subject, we can replaced the blurred subject area with
the one in focus that we obtained using our mask to then

create a final result which should have a subject in focus
and the background blurred depending on the depth within
the image.

4. Results
With each section, we attempted many different ways to

complete the tasks before resulting in our final product.

4.1. Depth Map

Many iterations of creating a depth map led to our cur-
rent solution that is explained below.

4.1.1 Disparity Map

We were limited on the ways we would be able to cre-
ate a disparity map using tools that were available to us.
In the beginning, we initialized a stereo semi-global block
matcher without any other functions and were getting very
inaccurate results. When translating this disparity map we
were getting very bad results for our depth maps. This led
us to explore different options, and we found the Disparity
Map Post-Filtering technique that used 2 matchers instead
of one. This allowed us to then use a filtering technique
that would clean up the disparities and produce a disparity
map that we could use for the depth map. One thing we did
notice is that the Ground Truth Disparity Map that was pro-
vided to us had some occulusions due to the angling of the
camera positions which can be seen in Figure 1, where ar-
eas are colored black. This led to black spots in the Ground
Truth Depth Map that was produced, but with our imple-
mentation, we were able to mitigate those issues. Since the
filtering was able to see the disparity maps from two views
and merge those disparities together, we were able to get
rid of these occlusions and produce a somewhat uniform
disparity map. This was nice but there were still some ob-
vious issues due to the fact that objects like the cabinets or
walls in the background were the same color. This made it
difficult for the matcher to distinguish the disparity within
these regions and resulted in less accurate disparity values
within those regions. The image of our disparity map can
be seen in Figure 2.

4.1.2 Disparity Map to Depth Map

Although the formula for translating a disparity map to a
depth map is relatively simple, the values that were being
used needed to be scaled properly in order to produce a
somewhat usable output. We followed the same steps we
used to produce the depth map that used the Ground Truth
disparity map on our own disparity map but we kept getting
results with abnormal lines in the background. After care-
ful evaluation we came to realize that this was due to scal-
ing issues with the focus length and baseline of the camera
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Figure 1. Ground Truth Depth Map

Figure 2. Disparity Map

positions. After scaling the values properly, we were able
to obtain our depth map created from the filtered disparity
map we created. The final depth map can be seen below in
Figure 3.

Figure 3. Depth Map

4.2. Image Segmentation

Numerous techniques were implemented such as using
a threshold, contouring, and the Watershed Algorithm. All

of these were tested before we ultimately decided on the
GrabCut Algorithm to detect our subject.

4.2.1 Detecting the Subject

Using the Mask R-CNN model, we obtained masks that de-
tected the different objects in the image, as seen in Figure 4.
Then, we determined a rectangle in the center of the image
that covers roughly 20% of the image, and created a mask
for it, as can be seen in Figure 5a. Using this rectangular
mask, we determined which masks from Figure 4 are in the
center by checking which of these masks overlap with the
central rectangle, and the result can be seen in Figure 5b.
The masks are then eroded to make sure that they do not
cover areas that are not included only in the subject, seen
in Figure 5c, and we can see the placement of these masks
over the original image in Figure 5d.

Figure 4. Mask R-CNN Object Detection

4.2.2 Determining the Depth-of-Field

Using the masks from the previous step, we masked the
depth map obtained earlier and obtained the minimum and
maximum depths of the objects. We went through the re-
maining masks and determined if any objects are within this
depth of field, and in this particular image we did not find
additional in-focus objects.

4.2.3 Using the GrabCut Algorithm

With the masks we previously found, we called the Grab-
Cut function implemented by OpenCV to find the fore-
ground. As seen in Figure 6, the GrabCut algorithm us-
ing these masks resulted in a pretty accurate foreground
image. We still have some background items included in
the foreground, which could further be improved by addi-
tional background information in the mask we passed into
the GrabCut algorithm. The detection and outline of the
umbrellas that we want in focus is very sharp and accurate,
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Figure 5. Mask R-CNN Object Detection a. The center items are
determined by checking if they overlap with this centered rectan-
gle mask. b. The masks from Figure 4 that overlapped with the
centered rectangle. c. The eroded center object masks. d. The
eroded masks over the original image.

which is very important for when we stitched this on top of
the blurred background.

Figure 6. GrabCut Result

4.3. Gaussian Blurring the Background

After multiple iterations of implementing different tech-
niques, we landed on using scale spaces to accurately rep-
resent the depths within the image using the depth map.

4.3.1 Scale Space

In order to produce properly blurred images, we needed to
figure out σ, or Standard Deviation values, to use for the
kernel size that was to be used for the Gaussian blur. In
order to do this, we used the existing camera calibration
matrix that was provided to us with the Middlebury dataset
and formulated the proper σ value to use for the kernel size.

In order to produce our Camera Matrix P we needed to set
up a formula to handle this which is given by

P = K[R|t]. (2)

P is the camera matrix that we are looking for. K is the
camera calibration matrix which we have already obtained
from the dataset. R and t are the rotational and translation
matrices, but since we are looking at fixed images with no
rotation or translation, we can then transform the formula to

P = K[I|0]. (3)

We then looked at the 3D homogeneous world coordinates
which are shown by

Xi = (x0, y0, zi, 1)
> (4)

and in our case since we are not translating the image ver-
tically, we set y0 to 0. Using the Camera Matrix, we were
able to transform the homogeneous world point to a homo-
geneous image point with the following formula

xi = PXi. (5)

Using this newly obtained xwhich is the projected homoge-
neous coordinate on the 2D image plane, we could subtract
the principal point px in order to find the distance between
this point in the 2D plane in relation to the principal point.
We set the zi value to different values to represent the dif-
ferent depths within the image to obtain xi, and we can use
the following formula to then find σ.

σ =
(x0 − px)− (xi − px)

2
(6)

For objects that are closer to the camera than the in focus
plane we can represent them using x−i and the formula

σ =
(x−i − px)− (x0 − px)

2
. (7)

After obtaining our σ, we can calculated the kernel size us-
ing the following algorithm

if σ ∗ 6 is even then
kernel← 6σ + 1

else
kernel← 6σ

end if
We use 6 as our value to multiply by in order to produce
a kernel that will efficiently blur the image with 3 pixels
on each side of the middle point. With this we were able
to create images that were blurred using the respective ker-
nel sizes and store them to use when we were creating our
depth-based blurred image.
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4.3.2 Haloing

We noticed when we were working on the blurring of im-
ages that we would encounter a halo effect around certain
objects in the image such as the umbrellas, which can be es-
pecially seen in Figure 7 around the white umbrellas. In or-
der to get rid of this effect, we looked into a technique called
inpainting. What this would do is fill in parts of an image
that have been masked out using the surrounding pixel val-
ues to create a realistic representation of what the image
may look like without the masked area in the scene. The
image that we originally passed into the scale space algo-
rithm was now changed to be this inpainted image instead.
The algorithm used for the inpainting method was Telea’s
Algorithm also known as the fast marching method. When
passing this into the scale space algorithm and looking at
our blurred set of images we could see that the halo effect
had disappeared, as can be seen in the transition from the
top image to the bottom image of Figure 8.

Figure 7. Image with Halos

4.3.3 Depth-based Blurred Image

After we had obtained our blurred images without any halo-
ing, we moved onto creating our final blurred image based
off the depth value. We iterated through the entire image
pixel-by-pixel and took the corresponding pixel value de-
pending on the depth which was taken from the depth map.
We initially took the pixel value from the closest image that
was available but this led to issues with banding within the
image. In order to get rid of this, we looked into interpola-
tion and took the two images that were closest to that pixels
depth value. This led to a much smoother image that we
could then use for the final result.

4.4. Creating the Final Result

Using the mask that was produced from our image seg-
mentation, we created a cutout of the subject that we wanted
to keep in focus. This allowed us to keep a cutout that

Figure 8. Zoom-in of Halo Before and After Inpainting

we could later on paste onto the final image where the sur-
rounding background is blurred properly while the subject
is in focus.

After we obtained our depth-based blurred image and
our subject that was in focus, we combined them to cre-
ate a final image. We began by making a cutout of where
we were going to paste the in focus subject from the depth-
based blurred image such that the in focus subject that was
going to be pasted on would not combine with the existing
pixel values in the location. After the subject was cut out,
we pasted in our in focus subject and were left with the final
result. We cropped the image to get rid of pixels that were
incorrect due to the occlusions and we were left with the
final complete image which can be seen below in Figure 9.

Figure 9. Final Stitched Image
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5. Qualitative Experiment
To prove our solution mimics a professional camera in a

better way than the naive approach we observed earlier in
the paper, we implemented both of the solutions. The naive
approach was implemented by simply blurring the back-
ground uniformly and pasting the foreground (segmented
in the same process as with our solution) onto the blurred
background. We see the results of the naive approach in
Figure 10.

Figure 10. Naive Approach Final Image

The naive solution had a background that is uniformly
blurred with a kernel window of size 101x101, which is
between the highest and lowest kernel sizes of our solu-
tion. Looking at this image in comparison to our final result
in Figure 9, we can see that the background in the mid-
dle where there is the dark curtain hanging from the top
is blurred more heavily in our result than the naive solu-
tion, and the wooden shelves on the right of the image are
more in focus in our image than the naive approach. This
aligned with the placement of these objects, where the back-
ground curtain is much farther away from the camera than
the wooden shelves on the right. With these details, we
could see that our approach mimics a camera’s depth-of-
field with the umbrellas in focus and the background be-
coming more blurred as its distance increases.

6. Discussion and Future Work
We produced a result that worked for this dataset, but

not all datasets will contain the necessary information such
as the calibration data needed in order to perform all of the
necessary steps. We plan to work on adapting the process
to all types of stereo images with many different subjects
and refining the process in order to produce results with any
set of stereo images. The Depth Map also struggled with
certain areas in images that had a lack of features such as a
wall as the matcher was not able to distinguish properties to
align the disparities resulting in less accurate depth values.
Another issue that arises when creating disparity maps is the

similarity in colors. When certain pixel values are similar in
color, it creates a harder problem for the matcher to create a
disparity map.

In terms of the image segmentation to detect the sub-
ject, the best solution we found after experimenting with a
few other solutions still resulted in some parts of the back-
ground being added to the subject mask. Since this part
really affects the final result as all areas of the mask will
be fully in focus, improvements in this step would greatly
benefit the project. Using the same GrabCut algorithm, we
can make improvements in the mask we provide by adding
in pixels that we can confidently say are in the background
of the image, or also providing a rectangle to the algorithm
as an area of interest. We could also explore different al-
gorithms to see if a different approach would improve our
results. Another approach we think will improve this step is
to use the depth map information and possibly combine the
thresholding approach with the GrabCut results to see if we
can remove additional background pixels from the subject.

The blurring portion of the project also posed some diffi-
culties that could be improved upon in the future. The way
we determined the standard deviations and kernel sizes of
blurring was all set in the image space, and we should be
doing the calculations in the frequency space by doing a
Fourier transform before the blurring. Our implementation
works for a small amount of blurring when setting x0 = 1,
but for larger values and more depth in the image, we need
to implement the Fourier transform portion of the calcula-
tions.

With these small improvements, the conversion from
stereo images to a synthetic depth-of-field image would cre-
ate very professional-looking images.

7. Conclusion

Through our experiment we were able to take a com-
pletely in focus set of stereo images and extract a depth
map that could be used to simulate a depth of field within
the image, creating a more professional look in the image.
We produced the disparity map and transformed it into a
depth map, segmented out our subject from the rest of the
image, and applied a proper blurring affect in relation to the
depth found within the image. After stitching all the results
we were left with a final product that would mimic that of
a professional camera with a lens that allows the user to
change the depth of field. We discussed certain issues and
improvements that could be made in order to produce better
results in the future as well.
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