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Our group will focus on the logic puzzle game called Numbrix. Numbrix is a single 
player, grid-type, game in which the player fills in an  board with numbers from  in x nn  to n1 2  
sequential order going horizontally and vertically only. Diagonal paths are not allowed on the 
grid matrix. The puzzle begins with a number of pre-filled squares that aid the player in solving 
the puzzle as seen in Figure 1. None of the numbers may be repeated and all of the squares on 
the grid must be filled. The goal of Numbrix is to find a clear path from  in consecutive to n1 2  
order which can be traversed with only vertical and horizontal moves as seen in Figure 2.  

 

 
The computational problem we are trying to answer with Numbrix is to find an algorithm 

that can optimally solve Numbrix as fast as possible. Initially, one can think of solving this 
problem through a brute force algorithm in which every combination of number and square is 
used. Quickly, you will realize that this is not optimal. There are  squares on the grid and n2 p  
pre-filled numbers on the grid. Then, there are  numbers to place on the board. That meansn2 − p  
there are  combinations of filled grids. For Figure 1.,  so)!(n2 − p  9, p 28n =   =   

 numbers to fill in. Thus, if we used brute force, we would have to try 8) 3(92 − 2 = 5 3!5  
combinations. 

Instead of brute force, we could use a graph approach. If each square on the grid is a 
node, with directed edges between nodes if they are next to each other horizontally or vertically. 

  

Figure 1. Initial Board State Figure 2. Completed Board State 
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Then, we might be able to use path finding algorithms with some backtracking to find the 
solutions. A different approach could use backtracking exclusively. 
 
Other questions arise from Numbrix: 

How many different boards exist? Given a blank  board, how many different ways x nn  
are there to place the  numbers in consecutive order, using the rule of moving onlyn2  
horizontally or vertically? This problem may have added complexity, a unique solution may be 
rotated, creating a different looking solution, but should not be counted as another unique 
solution. 

Based on the previous questions, if the number of boards is small enough, would it be 
faster to generate all boards and see which boards match up with our pre-filled numbers when 
compared to more generalized algorithms? 

What is the minimum number of pre-filled squares that is required for a unique solution? 
This question addresses how Numbrix problems are solved based on the input grid. If we are not 
given enough initial information, the player has the freedom to construct more than one unique 
path to solve the problem and in turn opens the problem up to multiple solutions. How does the 
number of pre-filled squares required to find a unique solution change with the size of the board? 
In other words, given a completed n x n grid, how many numbers can we remove and still have a 
valid board with only one unique solution?  

Another computational problem we could solve is: does the given board have only one 
unique solution, or are there multiple solutions? In essence, this would be an extension of the 
basic algorithm; but instead of trying to simply solve for any solution, it becomes necessary to 
find all possible solutions that may satisfy the pre-filled conditions. 

Through this project we hope to explore different algorithms and how to best solve 
Numbrix puzzles. Using Numbrix puzzles as an example, we will learn how to prove correctness 
and analyze runtimes. 
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Mathematical Formulation of the Problem: 
 
Instance: A  board for a total of squares. Some squares are pre-filled in with unique x nn n2 p  
integers in the range [1, ].n2  
 
Solution Format: Let  be a two-dimensional  array such that each index in the arrayS  x nn  
corresponds to a unique distinct integer in the range [1, ] and is indexed by .n2 [row][column]S  
 
Constraints: Any integer at an index in the  array must be distinct from any other integer x nn  
at a different index in the  array. ; x nn

i, , , 1, ]; S[i][j] = [x][y] where i =  and j =∀ j x y ∈ [ n  / S / x / y  
 
All items in the  array must be an integer in the range [1, ]. ; x nn n2  

i,  1, ]; S[i][j] 1, ]∀ j ∈ [ n  ∈ [ n2  
 
For ,  such that , exactly one of the following casesk 1, ]∀ ∈ [ n2 − 1 i, 1, ]∃ j ∈ [ n [i][j]S = k  
must be true. 

1. [i ][j] S[i][j] 1  if  ∃S[i ]S − 1 =  +  − 1  
2. [i ][j]  S[i][j] 1 if  ∃S[i ]S + 1 =  +  + 1  
3. [i][j ] S[i][j] 1 if  ∃S[i][j ]S − 1 =  +  − 1  
4. [i][j ]  S[i][j] 1if  ∃S[i][j ]S + 1 =  +  + 1  

 
Figure 3. Visual Representation of the four cases above 
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Objective:  ; Minimize the total amount of time taken  to solve the problem such thatin Tm T  
 is as close to the hypothetical optimal runtime of  as possible.T (n )O 2  

Algorithm: 
We parse the initial board input from a string into a data structure called grid in the “list of lists” 
format. We also initialize a data structure placed which contains a mapping of every possible 
value in the input grid (values are 1,... height*width). We assign True for each filled in value and 
a False for each unfilled value and will update this mapping throughout our algorithm. We also 
initialize the global variables height and width after we have parsed the initial board input string.  
After the initialization of the board, we begin to iterate through different placement functions 
that will solve the grid until we either find a solution or search the entire search space and need 
to use the exhaustive function in order to finish the rest of the grid. The different placement 
functions that we implemented are listed below along with the algorithm for exhaustive search. 
 
Straight Edge Placement: 
From the current tile, check the neighbors in the upward and downward directions or the left and 
right directions and see if they have been placed with values that have an absolute difference of 
2. If so, then we know which number to place between those two tiles as those three tiles must 
have values in consecutive order. As seen below in Figure 4, the difference between the numbers 
in both examples is 2 meaning the middle tile must be 5 in order to fulfill the consecutive 
ordering constraint. 

 
Figure 4: Straight Edge Placement examples.  

Left: left and right example. Right: upwards downwards example. 
 
L Shape Placement: 
In this algorithm we want to eliminate the possible ways of placing values in the neighbors of the 
current tile by looking at the neighbors of the current tile’s empty neighbors. For this algorithm, 
the current tile must have two filled neighbors and two empty neighbors. We are then interested 
in neighbors of the current tile’s empty neighbors which will be on the diagonal tiles from the 
current tile, and any tile 2 tiles away in each direction (up, down, left, right). This creates a 
diamond, as seen in the figure below, of potential tiles to look at in this case. Once we have 
found these tiles (the neighbors of the current tile’s empty neighbors) we want to check if they 
have one other empty neighbor and two values that they must place. If that is the case, the empty 
neighbor we were looking at from the current tile will need to be saved for the neighbor of the 
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empty neighbors’ thus eliminating a spot that the current tile can place a potential value into. 
This leaves us with one spot to place our one last value which is correct.  

 
Figure 5: Tiles we are checking with the L Shape Placement 

 
In Figure 6 below, our current tile is denoted in yellow (in the very middle of the puzzle). Since 
we have already placed 22 and two neighbors of our current tile are unfilled, we have two 
possible locations to place 24. We can either place it in the green tile below or the blue tile to the 
left of the current tile. We now look at the neighbors’ neighbors to see if they have any useful 
information. We see that one of our neighbors’ neighbors is filled with a 13. We also see that the 
numbers above and below 13 (12 and 14) are not placed, and that there are only two locations (in 
orange and blue) to place those numbers. Since both the orange and blue tiles are used to place 
12 and 14, we are unable to place 24 in the blue tile. Therefore, the green tile must be 24. 

 
 

 
Figure 6: L Shape Placement example 

 
Single Option Placement: 
This algorithm can be split into two cases in which the current tile is filled or it is empty.  
 
In the first case, the current tile is filled. Therefore, we can check to see if the current tile only 
has one neighbor tile that is not filled. We then check if there exists a number that is one greater 
or one less than the current number that has not been placed. If so, then we know that the open 
neighbor must be filled with that number. Looking at the left part of Figure 7 below, we can see 
that the current tile is 2 and the other two neighbors are filled. Therefore, the tile with a value of 
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2 only has one open neighbor left and since we know it must place one more number (3) we can 
place 3 in the open neighbor. 
 
In the second case, the current tile is empty. Therefore, we must check the neighbors of the 
current tile and see if there are two neighbors that have values which have an absolute difference 
of 2. If so, then we can look at the diagonal tile that is in the same direction of the two neighbors 
to confirm if the only other location the consecutive number could be placed has already been 
filled. If that is the case, there is only one number that can be placed in the current tile. Looking 
at the right part of Figure 7 below, the yellow question mark tile is the tile we are trying to fill. 
We look at the two neighbors and see that they have an absolute difference of 2. We know that 
we could place a 3 in the yellow tile. However, we are not certain this is the only tile the 3 could 
be placed in. The other location that the 3 could be placed is in the blue tile. Since it is already 
filled with a 1, we know that the only place the 3 can be placed is in the yellow tile. 

 
Figure 7: Single Option Placement examples 

Left: Current tile is filled. Right: Current tile is empty. 
 
Neighbor Leftover Placement: 
First the algorithm confirms the current tile is empty. If so, then it checks that three of the 
neighbors of the current tile are filled. If so, a dead end is created since we know two neighbors 
have already placed their respective consecutive numbers leaving one neighbor with one 
placement option left with two possible locations to place the consecutive number. We then 
check if 1 or the largest value which is the side length of the grid squared is in close enough 
proximity to fill in the dead end. If not we can then place the consecutive number of the neighbor 
making sure that it is correct.  
 
Looking at Figure 8 below, the current tile is the yellow tile. The yellow tile has a neighbor filled 
with a 6, which has both numbers below and above it placed (5 and 7 are placed). Likewise, the 
yellow tile has a neighbor filled with an 8, which has both numbers below and above it placed (7 
and 9 are placed). The last filled neighbor is a 10. Since 9 has been placed, but not 11, we are 
looking to place 11. If we place 11 in the red tile, there is no possible value to give the yellow 
tile, unless the ends of our number chain (1 or 16 in this case), are placed in that spot. However, 
since we see that 1 is already placed, 1 cannot be placed in the yellow tile. The maximum value 
to be placed is 16. While 16 is not placed in the puzzle yet, we see that 15 is placed. 16 must be 
placed within 1 manhattan distance from 15, and the yellow tile is not within that distance. Thus, 
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we know that no value will be able to be placed in the yellow tile if we place the 11 in the red 
tile. So, we place the 11 in the yellow tile. We are able to use logic to fill the yellow tile with 11. 

 
Figure 8: Neighbor Leftover Placement example 

 
BFS Placement: 
Frontier tiles are tiles that have already been filled in, however they still need to place 1 or 2 
values into their neighbors. The algorithm will identify the source and target tiles for BFS by 
identifying the frontier tiles with the smallest absolute difference between them. Then we declare 
the source tile as the tile containing the smaller number and the target tile as the one containing 
the larger number. Next, we run BFS to search for possible paths that can be constructed from 
the source tile to the target tile such that all consecutive numbers between the source and target 
tiles are used in the path. This results in three cases: 
 
The first case is when BFS only finds one path and it is valid, therefore we can place all of the 
values in the path into the tiles. 
 
The second case is when BFS finds multiple paths. In this case, we look at the multiple paths. 
For any tile in any of the paths, we check if all paths placed the same number in the same tile. If 
so, then we place the number in the grid since that value was placed in that tile by all paths. 
 
The third case is when BFS finds no paths, and therefore no tiles are changed. BFS should be 
able to find valid paths with valid grids but due to our backtracking implementation, which we 
talk about below, we must handle this case.  
 
In Figure 9 below, we have three examples. In the left-most example, BFS finds one path from 1 
to 4 (in blue), thus there is only one way the numbers can be placed. In the middle example, BFS 
finds two paths from 1 to 4, the first path which places a 2 in the purple tile and a 3 in the red 
tile. The second path places a 2 in the purple tile and a 3 in the blue tile. Since both paths place a 
2 in the purple tile, we know that the purple tile must be filled with a 2. The right-most example 
is where BFS finds two paths from 1 to 3, the red path and the blue path. There is no overlap 
between the two paths so we are unable to place any tiles. 
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Figure 9: BFS Placement example 

From left to right: Case 1, Case 2, Case 2, and a BFS constraint example 
 
Our BFS code has two constraints that are not normally added. First, in order for our path to be a 
possible path to consider, the path length must be appropriate considering the starting node and 
ending node. In Figure 10 below, are trying to find paths from 1 to 5. If we place a 2 between 1 
and 5, we cannot say that the tiles 1, 2, 5 make a path as we have not reached the desired path 
length of 5. Additionally, we are unable to place numbers outside the green box, as any tiles 
placed outside the green box would mean that we would be unable to reach 5 from 1.  
 

 
Figure 10: BFS Constraint example 

 
Exhaustive Search:  
Once we have exhausted all of the above algorithms, meaning none of the above algorithms are 
able to add new tiles to the grid, we begin the exhaustive search process. We begin by searching 
the grid for the smallest placed number. After identifying this tile and its coordinates, we search 
the neighbors for the next increasing consecutive value. We may encounter three different cases 
from this search.  

 
Case 1: If the next increasing consecutive value does not exist in the grid, then we must try to 
place the value in one of the open neighboring tiles. We then run exhaustive search on the grid 
with this guess added. If there are no open neighboring tiles then we must recurse back and 
reattempt to place the value we were currently at.  
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Case 2: If the next increasing consecutive value exists on the board is a neighbor of the current 
tile, then we move to that tile and call exhaustive search from that tile. 
 
Case 3: If the next increasing consecutive value exists on the board but does not exist in the 
neighboring tiles, then the placement of the current tile was not valid and we must recurse back 
and continue the exhaustive search. 
 
When the value of the current tile is the maximum value to place, then we must complete some 
checks.  
 
The first check is if all of the tiles of the grid have been placed and if the completed grid follows 
all of our constraints. If the completed grid follows all of the criteria, we have found the solution 
and must return the grid. If the completed grid does not follow all of the criteria that had been 
placed, that means this is not the solution and we must recurse back.  
 
If there are still unfilled tiles, 1, the minimum number of the grid, has not been placed on the 
grid. To find the location for 1, we perform exhaustive search on the grid in decrementing order. 
We find the smallest value on the grid and then pass this value to the exhaustive search with a 
flag to indicate that we want to decrement now. All of the cases from above apply and we add an 
additional base case which is called when 1 has been placed in the grid. Then we check if the 
grid is completely filled. If it is, then we must validate the current grid. If it follows all of the 
constraints in place, we have found the solution and return it. If any of these checks fail, we must 
continue to perform exhaustive search.  
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Correctness Proof: 
Straight Edge Placement: 
Assume that we have two tiles  and their values are represented by  where ., TT 1  2 ,v1 v2 v1 < v2  
We know that  and that there is a third tile  such that  is in between  andv | | 1 − v2 = 2 T 3 T 3 T 1  

 (either horizontally oriented or vertically oriented). Assume that there exists a valueT 2  
that is placed in . This is a contradiction as the only correct value= ) = v )v3 / (v1 + 1 / ( 2 − 1 T 3  

to place between  and into  is  because the solution and TT 1 2 T 3 ) v )v3 = (v1 + 1 = ( 2 − 1  
requires a path of consecutive increasing integers. 
 
L Shape Placement: 
Assume the current tile  has two neighbors and , both of which are empty. The value atT i T j T k  

 is  and we know that either has already been placed on the grid. Therefore,T i vi  or vvi − 1 i + 1  
to have a valid solution, a path of consecutive increasing integers, either  or vvi − 1 i + 1
(whichever is not in the grid already) must be placed in the one of the empty neighbors or T j T k  
of the current tile . Also, assume that  has a neighbor that also has two emptyT i T j T m  
neighbors where is one of them. The value at is and we know that T j T m vm  and vvm − 1 m + 1  
have not been placed on the grid. Since  needs both of its empty neighbors to placeT m  

, will be filled with a number. Then, cannot place either  and vvm − 1 m + 1 T j T i  or vvi − 1 i + 1
(whichever is not in the grid already) in  since it is already filled. Thus, it has to placeT j  

(whichever is not in the grid already) in  as is the only empty neighbor of or vvi − 1 i + 1 T k T k  
.T i  

 
Single Option Placement: 
Case 1: The current tile is filled. 
Assume the current tile only has one empty neighbor . The value at  is  and we knowT i T k T i vi  
that either has already been placed on the grid. Therefore, to have a valid or vvi − 1 i + 1  
solution, a path of consecutive increasing integers, either (whichever is not in the or vvi − 1 i + 1  
grid already) must be placed in the 1 empty neighbor  of the current tile . Note, that thisT k T i  
case does not apply when  is 1 or the maximum value of the grid.vi  
 
Case 2: The current tile is empty. 
Assume the current tile is empty and it has two neighbors and , both of which areT i T j T k  
already filled and their values  satisfy . Also, assume that another tile  is, vvj  k v || j − vk = 2 T m  
diagonal from  such that it is neighbors with both and . The value of  is  and weT i T j T k T m vm  
know . Therefore, we know we must place and since the= in(v , v )vm / m j  k + 1 in(v , v )m j  k + 1  
only other neighbor of both  is filled ( ), we must place  in  to have a,T j T k T m in(v , v )m j  k + 1 T i  
valid solution, a path of consecutive increasing integers. 
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Neighbor Leftover Placement: 
Assume the current tile is empty and only has one empty neighbor . The other neighborsT i T k  
of  are filled. Only one of the filled neighbors of , named , has a value where T i T i T j vj vj + 1  
or has not been placed in another tile. We call this value that has not been placed . We vj − 1 vp  
claim that the value that has not been placed, , must be placed in  if minimum and thevp T i  
maximum value (1 and ) cannot be placed in that location.n2  
 
Case 1: 1 and  are already placedn2  
Assume 1 and  are already placed somewhere in the puzzle. Then we fill  with a randomn2 T i  
value  that is not . Then, by the constraints of the puzzle, and  must be placedvi vp vi + 1 vi − 1  
in neighboring tiles to . Since we already know that the extreme values (1 and ) are alreadyT i n2  
placed in the puzzle, both and  must be placed. Remember that one of the neighborsvi + 1 vi − 1  
needs to place  and the other neighbors have already placed their upper and lower values.vi  
Thus, and  must be placed in an empty neighbor. However, there is only one emptyvi + 1 vi − 1  
neighbor, which means that only one of two values ( and ) can be placed. This is avi + 1 vi − 1  
contradiction as only one of the two values can be placed. Then, the only value that can be 
placed in  is .T i vp  
 
Case 2: 1 and  are not already placedn2  
If 1 and  are not already placed somewhere in the puzzle, we need to see if it is possible ton2  
place 1 and  in . We take a conservative approach to this problem. We find the maximumn2 T i  
value that has already been placed and find the absolute value of ( -maximum_value). We usen2  
the number that we calculate as the manhattan distance from the maximum_value. If  fallsT i  
within this manhattan distance from the maximum_value, then it is possible to place  in .n2 T i  
That means that if the value at is , there would only be one value to place from there (T i n2

), which can be placed in , the empty neighbor of . However, if  does not falln2 − 1 T k T i T i  
within this manhattan distance from the maximum_value, then we know that cannot be placedn2  
in  and we would have to check if 1 can be placed at . If neither can be placed, then we canT i T i  
basically look at Case 1, where we can assume 1 and  are already placed somewhere else inn2  
the puzzle. 
 
BFS Placement: 
Define a graph , where tiles are vertices and edges occur between neighboring tiles.(V , )G E  
Then, we find frontier tiles, which are tiles with a value  where  or  does not existv  1v +   1v −   
in the grid yet. We sort the frontier tiles by value. We find the difference between these frontier 
tiles. If the difference is small enough , then we run BFS where one frontier tile is the≤ og n )( l 3

2  
source tile and we go to a depth of the difference between the two frontier tiles. Our BFS is 
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modified so that the nodes that were visited can be visited again. We save all paths from source 
to our sink (the other frontier tile). We then consider cases based on these paths. 
 
Case 1: If only one path was found, then we claim that there is only one way to place the 
numbers from the value of source tile to the value of the sink tile. If there were more ways to 
place these numbers, there would be multiple paths found, by the properties of BFS. 
 
Case 2: If multiple paths were found, then we look at each index in all of the paths. If all the 
paths found have the same tile at the same index, then we can find the value that should be 
placed at that tile. If all the paths overlap on one tile at the same depth in the BFS, then we know 
that the value to be placed there cannot be placed in any other location (as no paths exist with 
that value in a different location). 
 
Exhaustive Search:  
Exhaustive search is the brute force method to finding the solution. The algorithm will try all 
possible combinations for each tile in the grid which will eventually get a correct answer that 
fulfills the constraints, if one exists. 
 
Overall Correctness: 
Since all the Placement algorithms are correct and we run these algorithms first, we are 
guaranteed that our resulting grid will have correctly filled in values. Then, when we run 
exhaustive search we are guaranteed to find a solution that is correct. 
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Runtime Analysis: 
Our runtime analysis is in terms of , where  is the side length of the grid.  is the number ofn n n2  
tiles in the grid. 
 
Straight Edge Placement:  
For each tile, we check if there are any straight edge patterns. Iterating over each tile takes 

 time. To check if there is a straight edge pattern, we check each neighbor’s values.(n )O 2  
Finding a value in a tile takes time. Thus, the runtime is .(1)O (n )O 2  
 
L Shape Placement: 
For each tile, we check if the tile is filled. Iterating over each tile takes  time and checking(n )O 2  
if filled takes  time. If the current tile is filled then we check for specific patterns pertaining(1)O  
to the diamond tiles that can be seen in Figure 5. In either case the bottleneck is iterating over all 
the tiles which makes the overall runtime .(n )O 2   
 
Single Option Placement:  
For each tile, we check if the tile is filled. Iterating over each tile takes  time and checking(n )O 2  
if filled takes time. Each case (tile is filled or not filled) will have different checks which(1)O  
iterate through all neighbors. As there are at most 4 neighbors, the worst case would be (4)O
time. The overall runtime is dominated by the traversing of the grid which results in an overall 
runtime of .(n )O 2  
 
Neighbor Leftover Placement:  
For each tile, we check if a dead end exists at that tile. Iterating over each tile takes  time.(n )O 2  
A dead end is formed by three neighbors where two have already placed their respective 
consecutive numbers leaving one neighbor with one placement option left with two possible 
locations to place the consecutive number. Thus, checking if a dead end exists requires constant 
time checks as we just need to look at specific tiles’ values. Then, iterating over the tiles takes 

 time and then we perform constant time checks, the dominating runtime is .(n )O 2 (n )O 2  
 
BFS Placement: 
This algorithm is a slightly modified version of BFS in regards to the implementation because 
we only run BFS on a grid which can be interpreted as an adjacency matrix. 
We try to use a BFS-like method to find all valid paths from one tile to another, but due to the 
large time complexity, we limit the maximum path length. When building the path up from the 
smaller tile, we end up getting a similar runtime to exhaustive search, but on a much smaller 
scale. In our case, since we want to maintain the same rough running time to about , we(n )O 2  
choose to restrict the search space of the BFS to roughly  options at maximum, which ends upn2  
making our maximum BFS path distance of around . So, each time we performloor(log (n ))f 3

2  
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this BFS-like placement, we find two frontier nodes that are within of each other,loor(log (n ))f 3
2  

then try to find paths between them. With these paths, we can place values in tiles where all 
possible paths agree. Since our path length is restricted, our search space will never exceed 

.(n )O 2  
 
Exhaustive Search: 
The most simple exhaustive search algorithm approaches the problem by building the path from 
smallest to largest. This method is relatively simple, and is comparable to a DFS search where 
we probe each possible subtree but with early stopping. At each node, we will have at worst 3 
possible choices of where to go next. 
 
At worst, this method seems to result in an exponential runtime. Mathematically, this is(3 )O n2

  
shown by analyzing a recursion tree. The tree will have depth  and each level  make n2 i 3i  

recursive calls. Therefore, the total work done is . The time complexity   ∑
n2

i=0
3i = 3−1

3 −1n +12

=  2
3 −1n +12

 

of this is as claimed above.(3 )O n2

  
 
However, due to there being squares given to us in the puzzle, our algorithm will result in 
significantly reduced runtime on average. As we explore the DFS tree further, the number of 
choices at each node will be decreasing multiplicatively, as each tile placed removes 1 choice 
from each of its neighbors. Not only that, tiles with one choice can be resolved with certainty, 
adding no extra multiplier to the time. 
For a puzzle where we are given k tiles already, we have a chance of meeting a set tile, and/nk 2  
if we don’t see a set tile, we have a chance of seeing a set tile in each of the neighbors. In/nk 2  
this fashion, we have a chance for all filled neighbors and 0 choice, ak/n )( 2 3  

for two filled neighbors for 1 choice, ak/n ) (n )/n n )/n( 2 2 2 − k 2 = (k2 2 − k3 6  
chance for one filled neighbors for 2 choices, and ak/n ) (n ) /n n n k )/n( 2  2 − k 2 4 = (k 4 − 2 2 2 + k3 6  

chance for no filled neighbors and 3 choices. Everyn ) /n n n k n k )/n( 2 − k 3 6 = ( 6 − 3 4 + 3 2 2 − k3 6  
time we fill in one more square, we increase k by 1, so k will approach  as the algorithmn2  
progresses. 
Summing these together, we get an expected 

n k n k + k n n k + n )/n 3n n k n k )/n(3n6 − 9 4 + 9 2 2 − 3k3 2  4 − 4 2 2 + 2k3 k2 2 − k3 + k3 6 = ( 6 − 7 4 + 6 2 2 − k3 6

calls per step. As k approaches , the calls per step approaches 1.n2  
 
By the time , we see that is around 2.21875 choices/8k ≥ n2 3n n /8 n /64 /512)/n( 6 − 7 6 + 6 6 − n6 6  
per step. 
By the time , we see that is around 1.625 choices per/4k ≥ n2 3n n /4 n /16 /64)/n( 6 − 7 6 + 6 6 − n6 6  
step. 
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By the time , we see that is around 1 choice per step./2k ≥ n2 3n n /2 n /4 /8)/n( 6 − 7 6 + 6 6 − n6 6  
By the time , we see that we get/p for some p nk ≥ n2 <  2

choices per step for at max of3n n /p n /p /p )/n /p 6/p /p( 6 − 7 6 + 6 6 2 − n6 3 6 = 3 − 7 +  2 − 1 3  
 steps, but approaches 1 as p approaches .(p )/pn2 − 1 /2n2  

So we see that k is approaching the average of 1 choice, after which all choices will be roughly 
constant as on average, there will be 1 possible choice to make at each step. 
So, at worst we would only need around time.(3 )O n /22

  
 
With Randomization: 
To further improve the runtime, we can randomize which choice we make for each decision. 
This means that when there are two choices, we have a 50% chance of skipping it, and for 3 
choices it is 33%. So, we can remove 33% of the 3 choices and 50% of 2 choices, giving us on 
average: 

n k n k + n n k + n )/n 2n n k n k )/n(2n6 − 6 4 + 6 2 2 − 2k3 k3 + k
 4 − 2 2 2 + k3 + k3 k2 2 − k3 + k3 6 = ( 6 − 5 4 + 5 2 2 + k3 6  

calls per step, which gives us a final .(2 )O n /22

  
 
There are many other considerations which can reduce the runtime further, such as the fact that 
all Numbrix puzzles must contain a certain number of known squares in order to be uniquely 
solvable and that these squares must be spread out within the range of possible numbers. These 
factors will improve the runtime significantly, due to removing most of if not all of the lengthiest 
computations required in the beginning, but we will not go into further detail for the sake of 
brevity. 
 
Overall:  
We run the loop of Placement algorithms repeatedly until the grid is filled completely or we 
reach a certain point in which the algorithms cannot place any new tiles on the grid. If the 
Placement algorithms do finish the grid, the algorithms run for each tile will all be  and in(n )O 2  
the worst case we would run this loop for tiles meaning we would achieve an overall runtimen2  
of . If we terminate from the loop of initial placement algorithms, we will then run(n )O 4  
exhaustive search on the remaining tiles in the grid. Overall, this results in exhaustive search 
dominating the algorithmic runtime with , but it comes with some significant caveats.(2 )O n /22

  
 
It is important to note that empirical analysis gives us drastically reduced runtimes, as our 
approaches manage to remove much of the lengthiest portions from the exhaustive search most 
of the time. The exhaustive search method we use is top heavy, so by the time our other 
algorithms have filled in as much as they can, the exhaustive search may have become close to 
trivial for many puzzles (especially of the lower difficulty). 
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Experiments: 
In order to conduct our experiments, we began by scraping multiple Numbrix puzzles from the 
Parade website which has many examples with varying difficulty. We store the puzzles we 
scraped into a json file, and then use those puzzles as inputs to test our algorithms. We execute 
four different experiments: Rosetta Code, Placement, Exhaustive Search, and Main.  
 
Rosetta Code is an online solution to solving Numbrix puzzles, and the code can be found here. 
The algorithm implemented by Rosetta Code is similar to a DFS where it will only go down one 
solution path, but never backtracks up to check other solutions from different decisions when 
solving the puzzle. Due to its implementation, if the puzzle does not provide 1 as a given value 
then the algorithm will find a solution for all numbers including the minimum number given to 
the maximum number in the puzzle. However this solution does not include numbers below the 
minimum number given to 1, therefore the initial solution from solving the grid in the increasing 
direction may overwrite a square that is needed for numbers in the decreasing direction. 
 
Placement is our group’s algorithm(s) to solve Numbrix puzzles. We explain it extensively in the 
above sections of this report. 
 
Exhaustive Search is our baseline implementation that will check all combinations of all number 
placements to solve the puzzle. It is implemented using backtracking to make decisions until it 
finds a solution. 
 
Main is our final and best algorithm for solving Numbrix puzzles. This algorithm begins by 
solving the puzzles as far as possible using the Placement algorithms, and then completes the rest 
of the puzzle with Exhaustive Search. 
 
We execute benchmarks for each of the following algorithms and the results are summarized 
below. We calculate the following statistics for each puzzle difficulty: easy, beginner, 
intermediate, advanced, and expert. Average Time is the average time the algorithm took in 
seconds to solve all test puzzles, and it does not include the timeout times in the statistic (only 
times for correct completed puzzles are used). Correct is the number of puzzles the algorithm 
solved correctly. Incorrect is the number of puzzles the algorithm solved incorrectly. Timeout is 
the number of puzzles the algorithm timed out on (we set this limit to 5 minutes for all 
algorithms) and therefore got incorrect. Total is the total number of test puzzles. Completion rate 
is the percentage of test puzzles the algorithm got correct. Max time taken is the maximum time 
in seconds needed to solve a puzzle across all input test puzzles and if the timeout limit is hit 
then that is maximum time (however it technically could be much larger). 
 
Since we scraped all of our sample puzzles from Parade, all of our puzzles have side length 

. We did not test smaller or larger puzzles due to the variation in puzzle difficulty (with an = 9  

https://parade.com/numbrix/
https://rosettacode.org/wiki/Solve_a_Numbrix_puzzle
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different sized , we have no method to tell how hard the method is). We would extrapolate thatn  
our results would hold on and our Main algorithm would be efficient on larger and smaller 
puzzles. Additionally, each puzzle’s difficulty is determined by the person making the puzzle, 
therefore the easier puzzles may rely on more pattern matching, which is easy to spot by a 
human, but not so much by a computer.  
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Difficulty: EASY Rosetta 
Code 

Placement Exhaustive Search Main 

Correct 26 20 33 33 

Incorrect 7 13 0 0 

Timeouts 0 0 0 0 

Total 33 33 33 33 

Completion Rate 78.79% 60.61% 100.00% 100.00% 

Average Time (s) 0.00706 0.00622 8.94866 0.06709 

Max Time Taken (s) 0.06220 0.01165 97.30068 0.82854 

Difficulty: 
BEGINNER 

Rosetta Code Placement Exhaustive Search Main 

Correct 17 20 31 38 

Incorrect 21 18 0 0 

Timeouts 0 0 7 0 

Total 38 38 38 38 

Completion Rate 44.74% 52.63% 81.58% 100% 

Average Time (s) 0.22313 0.00624 45.44092 1.04406 

Max Time Taken (s) 4.19689 0.01347 300.00 21.07990 
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Difficulty: 
INTERMEDIATE 

Rosetta Code Placement Exhaustive Search Main 

Correct 28 23 37 37 

Incorrect 9 14 0 0 

Timeouts 0 0 0 0 

Total 37 37 37 37 

Completion Rate 75.68% 62.16% 100% 100% 

Average Time (s) 0.00351 0.01509 1.81503 0.43302 

Max Time Taken (s) 0.01912 0.02291 12.68243 6.25382 

Difficulty: 
ADVANCED 

Rosetta Code Placement Exhaustive Search Main 

Correct 24 5 31 31 

Incorrect 7 26 0 0 

Timeouts 0 0 0 0 

Total 31 31 31 31 

Completion Rate 77.42% 16.13% 100% 100% 

Average Time (s) 0.00300 0.01119 5.22955 2.31532 

Max Time Taken 
(s) 

0.03810 0.02462 80.06081 42.39981 
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Analysis: 
Starting with Rosetta Code, we see that this algorithm is fast and across all difficulties has an 
average of 65% completion rate. This makes sense as the algorithm does not backtrack after it’s 
decisions, therefore it is focused on finding solutions quickly. 
 
Placement by itself shows that it is not a sufficient method to solve puzzles as it has completion 
rates as low as 3%. We see these results because this algorithm is using placement techniques 
therefore when it can no longer identify valid placement decisions and it needs to make a guess, 
it terminates. This leaves many puzzles unsolved. 
 
Exhaustive Search has exactly the results that we expected since it never got any problems 
incorrect, only timed out on them. However, we assume that if we raised the timeout limit from 5 
minutes to a larger amount, we would expect to see exhaustive search complete all problems. 
The average time taken for each difficulty does not include the times for problems that maxed 
out the time limit, therefore the average time to solve problems of each difficulty is actually 
larger than what we have reported. These results are in line with our analysis of exhaustive 
search’s runtime in the above sections as it must make many decisions and must backtrack. 
 
Main has the best overall average times and completion rates out of all the algorithms. This is 
due to the fact that it combines the two algorithms Placement with Exhaustive Search together. 
The time efficiency comes because it will first narrow down the puzzle to a few unknowns using 
the Placement algorithm, and then complete the rest with Exhaustive Search. Above we proved 
the correctness of the Placement algorithm and Exhaustive Search which explains why we 
always find the correct solution. Note that for the expert difficulty, we could have run the 

Difficulty: 
EXPERT 

Rosetta Code Placement Exhaustive Search Main 

Correct 24 1 18 29 

Incorrect 11 34 0 0 

Timeouts 0 0 17 6 

Total 35 35 35 35 

Completion Rate 68.57% 2.86% 51.43% 82.86% 

Average Time (s) 7.99254 0.00908 50.51286 5.37275 

Max Time Taken 
(s) 

106.50612 0.01661 300.00 300.00 
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algorithm for longer to let Exhaustive Search find the solution for the puzzle (timeout was set to 
5 minutes. 
 
Conclusion: 
Our Numbrix puzzle solver, called Main, balances runtime with completion rate. Our results 
show that although we may have had to rely on the exhaustive search, using the Placement 
algorithm to solve trivial cases allows us to reduce the runtime of the code drastically (when 
compared to the Exhaustive Search implementation). While the runtime for our algorithm was 
not as good as the Rosetta Code implementation or Placement implementation, our code will 
theoretically find the solution. This is an improvement over the Rosetta Code implementation or 
Placement’s implementation which cannot always find a correct solution. Thus, our Main 
implementation has a slower runtime with a high completion rate. Our Main implementation 
provides insight that could assist others in creating improved algorithms with reduced runtimes 
for solving Numbrix puzzles. There are many other solutions to Numbrix and we have just 
provided one of many. The applicability of our findings may benefit others who are looking into 
solving Numbrix or other puzzles that are of similar structure such as Hidato or even Sudoku. 
With further optimization and adding heuristics, the code can potentially become even faster to 
solve all Numbrix puzzles. In summary, Main solves Numbrix puzzles in an algorithmically 
efficient method as Numbrix puzzles can be reduced to the NP-Complete problem of finding a 
directed Hamiltonian Path in a graph which has an exponential time complexity. 
 

https://arxiv.org/pdf/1706.09389.pdf

